Nuclear Envelope Rupture Is Enhanced by Loss of p53 or Rb.

نویسندگان

  • Zhe Yang
  • John Maciejowski
  • Titia de Lange
چکیده

The mammalian nuclear envelope (NE) forms a stable physical barrier between the nucleus and the cytoplasm, normally breaking down only during mitosis. However, spontaneous transient NE rupture in interphase can occur when NE integrity is compromised, such as when the nucleus experiences mechanical stress. For instance, deficiencies in the nuclear lamins and their associated proteins can cause NE rupture that is promoted by forces exerted by actin filaments. NE rupture can allow cytoplasmic nucleases to access chromatin, potentially compromising genome integrity. Importantly, spontaneous NE rupture was noted in several human cancer cell lines, but the cause of this defect is not known. Here, we investigated the mechanistic contributions of two major tumor suppressors, p53 (TP53) and Rb (RB1), to the repression of NE rupture. NE rupture was induced in normal human epithelial RPE-1 cells upon impairment of either Rb or p53 achieved by shRNA knockdown and CRISPR/Cas9 gene editing. NE rupture did not involve diminished expression of NE components or greater cell motility. However, cells that underwent NE rupture displayed a larger nuclear projection area. In conclusion, the data indicate that NE rupture in cancer cells is likely due to loss of either the Rb or the p53 pathway.Implications: These findings imply that tumor suppression by Rb and p53 includes the ability to prevent NE rupture, thereby protecting against genome alterations. Mol Cancer Res; 15(11); 1579-86. ©2017 AACR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutant lamin A links prophase to a p53 independent senescence program.

Expression of oncogenes or short telomeres can trigger an anticancer response known as cellular senescence activating the p53 and RB tumor suppressor pathways. This mechanism is switched off in most tumor cells by mutations in p53 and RB signaling pathways. Surprisingly, p53 disabled tumor cells could be forced into senescence by expression of a mutant allele of the nuclear envelope protein lam...

متن کامل

Inhibition of the p53 tumor suppressor gene results in growth of human aortic vascular smooth muscle cells. Potential role of p53 in regulation of vascular smooth muscle cell growth.

Loss of activity of the p53 tumor suppressor gene product has been postulated in the pathogenesis of human restenosis. Although the antioncogenes p53 and retinoblastoma (Rb) susceptibility gene have been reported to play a pivotal role in cell cycle progression in various cells, the role of p53 and Rb in the growth of human vascular smooth muscle cells (VSMC) has not yet been clarified. We used...

متن کامل

Nuclear envelope rupture is induced by actin-based nucleus confinement

Repeated rounds of nuclear envelope (NE) rupture and repair have been observed in laminopathy and cancer cells and result in intermittent loss of nucleus compartmentalization. Currently, the causes of NE rupture are unclear. Here, we show that NE rupture in cancer cells relies on the assembly of contractile actin bundles that interact with the nucleus via the linker of nucleoskeleton and cytosk...

متن کامل

Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies.

The nuclear lamina provides structural support to the nucleus and has a central role in nuclear organization and gene regulation. Defects in its constituents, the lamins, lead to a class of genetic diseases collectively referred to as laminopathies. Using live cell imaging, we observed the occurrence of intermittent, non-lethal ruptures of the nuclear envelope in dermal fibroblast cultures of p...

متن کامل

Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability

Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 15 11  شماره 

صفحات  -

تاریخ انتشار 2017